假设一个由4个页面组成的小团体:A,B, C 和 D。如果所有页面都链向A,那么A的PR(PageRank)值将是B,C 及 D的和。
- PR(A) = PR(B) + PR(C) + PR(D)
继续假设B也有链接到C,并且D也有链接到包括A的3个页面。一个页面不能投票2次。所以B给每个页面半票。以同样的逻辑,D投出的票只有三分之一算到了A的 PageRank 上。
换句话说,根据链处总数平分一个页面的PR值。
最后,所有这些被换算为一个百分比再乘上一个系数q。由于下面的算法,没有页面的PageRank会是0。所以,Google通过数学系统给了每个页面一个最小值1 − q。
所以一个页面的 PageRank 是由其他页面的PageRank计算得到。Google 不断的重复计算每个页面的 PageRank。如果您给每个页面一个随机 PageRank 值(非0),那么经过不断的重复计算,这些页面的 PR 值会趋向于正常和稳定。这就是搜索引擎使用它的原因。
完整的
这个方程式引入了随机浏览的概念,即有人上网无聊随机打开一些页面,点一些链接。一个页面的PageRank值也影响了它被随机浏览的概率。为了便于理解,这里假设上网者不断点网页上的链接,最终到了一个没有任何链出页面的网页,这时候上网者会随机到另外的网页开始浏览。
为了对那些有链出的页面公平,q = 0.15(q的意义见上文)的算法被用到了所有页面上, 估算页面可能被上网者放入书签的概率。
所以,这个等式如下:
p1,p2,…,pN是被研究的页面,M(pi)是链入pi页面的数量,L(pj)是pj链出页面的数量,而N是所有页面的数量。
PageRank值是一个特殊矩阵中的特征向量。这个特征向量为
R是等式的答案
如果pj不链向pi, 而且对每个j都成立时,等于 0
这项技术主要的弊端是,旧的页面等级会比新页面高,因为新页面,即使是非常好的页面,也不会有很多链接,除非他是一个站点的子站点。
这就是 PageRank 需要多项算法结合的原因。PageRank 似乎倾向于维基百科页面,在条目名称的搜索结果中总在大多数或者其他所有页面之前。原因主要是维基百科内相互的链接很多,并且有很多站点链入。
Google 经常处罚恶意提高 PageRank 的行为。Google 究竟怎样区分正常的链接交换和不正常的链接堆积仍然是商业机密。